On the free vibrations of a rectangular plate with two opposite sides simply supported and the other sides attached to linear springs

M.A. Zarubinskaya, W.T. van Horssen*
Department of Applied Mathematical Analysis, Faculty of Information Technology and Systems, Delft University of Technology, Mekelweg 4, 2628 CD Delft, Netherlands

Received 18 June 2003; accepted 23 October 2003

Abstract

In this paper an initial-boundary value problem for a plate equation will be studied. This initialboundary value problem can be regarded as a rather simple model describing free oscillations of a suspension bridge. The suspension bridge is modelled as a rectangular plate with two opposite sides simply supported and the other sides attached to linear springs. An adapted version of the method of separation of variables is used to find the eigenfrequencies for this plate configuration.

(C) 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Plates of various geometries, i.e., circular, annular, rectangular, polygonal, etc., and of orthotropic material are extensively used in engineering applications. These plates are widely used in modern aerospace technology, naval structural engineering, aircraft structures, and so on. A lot of literature exists for the free vibrations of rectangular plates. In most of these papers the classical theory for isotropic, homogeneous, thin plates with uniform thickness is used and the differential equation to describe the vibrations of the plate is given by

$$
\begin{equation*}
D\left(u_{x x x x}+2 u_{x x y y}+u_{y y y y}\right)+\rho \frac{\partial^{2} u}{\partial t^{2}}=0, \tag{1}
\end{equation*}
$$

[^0]where $D=E h^{3} / 12\left(1-v^{2}\right)$ is the flexural rigidity, E is Young's modulus, v is Poisson's ratio with $0<v<1, \rho$ is the mass density per unit area of the plate surface, h is the thickness of the plate, t is time, and $u(x, y, t)$ is the displacement of the plate in the z-direction. The majority of literature deals with classical boundary conditions representing clamped, simply supported, or free edges, and only a small number deals with edges which are restrained against translation or/ and rotation, or with other non-classical boundary conditions. It has been observed for rectangular plates by Leissa in Refs. [1-3] that there exist 21 distinct cases which involve all possible combinations of classical boundary conditions. For six cases having two opposite sides simply supported, it is well known that exact solutions exist which are, in fact, the extensions of Voight's work. In Ref. [2] Leissa gives a survey of research on rectangular plate problems up to 1970. For a further overview up to the beginning of this century the reader is referred to Refs. [4-9].

One of the most commonly used methods in free vibration analysis of plates is the RayleighRitz energy technique, where appropriate functions associated with various boundary conditions are chosen to describe the lateral deflection of the deformed plates. The chosen functions almost always do not satisfy the governing differential equation. Also, the functions may or may not satisfy all of the boundary conditions. Thus, the results obtained by the Rayleigh-Ritz method are approximate. Gorman in Refs. [4,5] succeeded in solving approximately free vibration problems of plates for various geometries and boundary conditions. Compared to the Rayleigh-Ritz method, the superposition technique in Refs. [4,5] allows one to obtain an analytical form of the solution which satisfies the governing differential equation and the boundary conditions. Sakata and Hosokawa [6] studied the forced and free vibration of clamped orthotropic plates by using a double trigonometric series. During the last 40 years the free vibrations of rectangular plates were studied intensively (see, for instance, Refs. [4-9], and the references in those papers). In this paper the free vibrations of a rectangular plate with two opposite edges simply supported, and linear springs densely attached to the two other edges will be studied. This boundary support will lead to boundary conditions which seem not to be studied in the existing literature. Flexible structures, like tall buildings and suspension bridges, are subjected to oscillations due to windforces or various other causes. Simple models which describe these oscillations are given in the form of weakly non-linear second and fourth order partial differential equations, as can be seen in Refs. [10-16]. Usually asymptotic methods can be used to construct approximations for the solutions of these wave or beam equations. In Ref. [16] a survey of the literature on oscillations in suspension bridges is given. A simple way to model the behavior of a suspension bridge is to describe it as a vibrating one-dimensional beam with simply supported ends. In Ref. [16] the other two dimensions are not taken into account because the dimensions of the bridge in these directions are assumed to be small compared to the length of the bridge. When the width of the bridge is taken into account a plate equation like (1) is obtained. To study, for instance, windinduced oscillations of suspension bridges one can of course use plate equations to describe the displacements of the deck of the bridge. However, to investigate these weakly non-linear windinduced vibrations it is necessary first to know the related linear vibrations of the rectangular plate with the boundary conditions as described before and as indicated in Fig. 1. For that reason these linear vibrations will be studied in this paper. Using the results as obtained in this paper one can start to investigate the weakly non-linear vibrations of a plate in a windfield as model for the wind-induced oscillations of a suspension bridge.

Fig. 1. A model of a suspension bridge.

2. The mathematical analysis of the problem

In this section the following initial-boundary value problem for the displacement function $u(x, y, t)$ will be considered:

$$
\begin{gather*}
u_{t t}+D_{1}\left(u_{x x x x}+2 u_{x x y y}+u_{y y y y}\right)=0, \quad 0<x<l, \quad 0<y<d, t>0 \tag{2}\\
u(x, y, 0)=u_{0}(x, y), \quad u_{t}(x, y, 0)=u_{1}(x, y), \quad 0<x<l, 0<y<d, \tag{3}\\
u(0, y, t)=u(l, y, t)=u_{x x}(0, y, t)=u_{x x}(l, y, t)=0, \quad 0<y<d, \tag{4}\\
D\left(u_{y y y}+(2-v) u_{x x y}\right)=-p^{2} u \quad \text { for } y=0,0<x<l, \tag{5}\\
D\left(u_{y y y}+(2-v) u_{x x y}\right)=p^{2} u \quad \text { for } y=d, 0<x<l, \tag{6}\\
u_{y y}+v u_{x x}=0 \quad \text { for } y=0, y=d, 0<x<l, \tag{7}
\end{gather*}
$$

where $D_{1}=D / \rho$, and where $p^{2} u$ in Eqs. (5)-(6) represents the linear restoring force of the springs acting on the boundaries of the plate at $y=0$ and d (see also Fig. 1). The usually applied plate sign convention for the shearing force acting on an element of the plate explains the difference in sign of the term $p^{2} u$ in the boundary conditions (5)-(6). It is assumed that there are no distributed bending moments acting along the edges of plate at $y=0$ and d (see Eq. (7)). It is also assumed that the plate is simply supported at the edges $x=0$ and l (see Eq. (4)). The initial displacement and the initial velocity of the plate in z-direction are given by $u_{0}(x, y)$ and $u_{1}(x, y)$, respectively (see Eq. (3)). The method of separation of variables will be used to find non-trivial solutions of the boundary value problem (2), (4)-(7), that is, non-trivial solutions in the form

$$
\begin{equation*}
T(t) v(x, y) \tag{8}
\end{equation*}
$$

will be constructed for the boundary value problem (2), (4)-(7). By substituting Eq. (8) into Eq. (2) and by dividing the so-obtained equation by $T(t) v(x, y)$, it follows that

$$
\frac{T^{\prime \prime}}{T}+D_{1} \frac{v_{x x x x}+2 v_{x x y y}+v_{y y y y}}{v}=0
$$

From this equation the following two equations are obtained:

$$
\begin{gather*}
\frac{T^{\prime \prime}}{T}=-\alpha D_{1} \tag{9}\\
v_{x x x x}+2 v_{x x y y}+v_{y y y y}=\alpha v \tag{10}
\end{gather*}
$$

where $\alpha \in \mathbb{C}$ is a separation parameter. From the boundary conditions (4)-(7), it follows that v has to satisfy

$$
\begin{gather*}
v(0, y)=v(l, y)=v_{x x}(0, y)=v_{x x}(l, y)=0, \quad 0<y<d \tag{11}\\
D\left(v_{y y y}+(2-v) v_{x x y}\right)=-p^{2} v \quad \text { for } y=0,0<x<l \tag{12}\\
D\left(v_{y y y}+(2-v) v_{x x y}\right)=p^{2} v \quad \text { for } y=d, 0<x<l \tag{13}\\
v_{y y}+v v_{x x}=0 \quad \text { for } y=0 \text { and } y=d, 0<x<l \tag{14}
\end{gather*}
$$

First, it will be shown that the non-trivial solutions of the boundary value problem (10)-(14), that is, the eigenfunctions of Eqs. (10)-(14) are mutually orthogonal on $0<x<l$ and $0<y<d$. Let $v_{1}(x, y)$ and $v_{2}(x, y)$ be two different eigenfunctions belonging to the different eigenvalues α_{1} and α_{2}, respectively. Thus

$$
\begin{align*}
& v_{1 x x x x}+2 v_{1 x x y y}+v_{1 y y y y}=\alpha_{1} v_{1} \\
& v_{2 x x x x}+2 v_{2 x x y y}+v_{2 y y y y}=\alpha_{2} v_{2} \tag{15}
\end{align*}
$$

where both functions v_{1} and v_{2} satisfy the boundary conditions (11)-(14). It will be shown that

$$
\begin{equation*}
\left(\alpha_{2}-\alpha_{1}\right) \int_{0}^{d} \int_{0}^{l} v_{1} v_{2} \mathrm{~d} x \mathrm{~d} y=0 \tag{16}
\end{equation*}
$$

Let the differential operator A be given by

$$
\begin{equation*}
A=\frac{\partial^{4}}{\partial x^{4}}+2 \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}, \tag{17}
\end{equation*}
$$

and consider

$$
\begin{equation*}
\int_{0}^{d} \int_{0}^{l}\left(v_{1} A v_{2}-v_{2} A v_{1}\right) \mathrm{d} x \mathrm{~d} y \tag{18}
\end{equation*}
$$

By using Eq. (15) it follows that

$$
\begin{equation*}
\int_{0}^{d} \int_{0}^{l}\left(v_{1} A v_{2}-v_{2} A v_{1}\right) \mathrm{d} x \mathrm{~d} y=\left(\alpha_{2}-\alpha_{1}\right) \int_{0}^{d} \int_{0}^{l} v_{1} v_{2} \mathrm{~d} x \mathrm{~d} y \tag{19}
\end{equation*}
$$

On the other hand, by two times integrating by parts it follows from Eq. (18) that

$$
\begin{align*}
\int_{0}^{d} \int_{0}^{l}\left(v_{1} A v_{2}-v_{2} A v_{1}\right) \mathrm{d} x \mathrm{~d} y= & \int_{0}^{d} \int_{0}^{l}\left(v_{1 x x} v_{2 x x}+2 v_{1 x y} v_{2 x y}+v_{1 y y} v_{2 y y}\right) \mathrm{d} x \mathrm{~d} y \\
& +\left.\int_{0}^{l}\left(2 v_{1} v_{2 x x y}+v_{1} v_{2 y y y}-v_{1 y} v_{2 y y}\right)\right|_{y=0} ^{d} \mathrm{~d} x \\
& -\int_{0}^{d} \int_{0}^{l}\left(v_{1 x x} v_{2 x x}+2 v_{1 x y} v_{2 x y}+v_{1 y y} v_{2 y y}\right) \mathrm{d} x \mathrm{~d} y \\
& -\left.\int_{0}^{l}\left(2 v_{2} v_{1 x x y}+v_{2} v_{1 y y y}-v_{2 y} v_{1 y y}\right)\right|_{y=0} ^{d} \mathrm{~d} x \tag{20}
\end{align*}
$$

Using the boundary conditions (14) it follows that the integral

$$
\left.\int_{0}^{l}\left(v_{2 y} v_{1 y y}-v_{1 y} v_{2 y y}\right)\right|_{y=0} ^{d} \mathrm{~d} x=-\left.\int_{0}^{l} v\left(v_{2 y} v_{1 x x}-v_{1 y} v_{2 x x}\right)\right|_{y=0} ^{d} \mathrm{~d} x .
$$

Integrating the integral two times by parts, and by using the boundary conditions (11)-(14) it follows that

$$
\left.\int_{0}^{l}\left(v_{2 y} v_{1 y y}-v_{1 y} v_{2 y y}\right)\right|_{y=0} ^{d} \mathrm{~d} x=\left.\int_{0}^{l} v\left(v_{2} v_{1 x x y}-v_{1} v_{2 x x y}\right)\right|_{y=0} ^{d} \mathrm{~d} x .
$$

After substituting the last expression and the boundary conditions (12), and (13) into Eq. (20), it finally follows that

$$
\begin{equation*}
\int_{0}^{d} \int_{0}^{l}\left(v_{1} A v_{2}-v_{2} A v_{1}\right) \mathrm{d} x \mathrm{~d} y=0 \tag{21}
\end{equation*}
$$

From Eqs. (19) and (21) it follows that Eq. (16) is true, and therefore v_{1} and v_{2} are orthogonal for $\alpha_{1} \neq \alpha_{2}$.

Now it will be shown that the eigenvalue α is real. Let $v(x, y)$ be an eigenfunction belonging to the eigenvalue α, so $A v=\alpha v$. Consider $\overline{A v}=\overline{\alpha v}$. Then, replacing in Eqs. (19) and (21) the functions v_{1} and v_{2} by v and \bar{v}, respectively, and using the fact that $A v=\alpha v$ and $A \bar{v}=\bar{\alpha} \bar{v}$ in Eqs. (19) and (21), it similarly follows that

$$
\begin{equation*}
(\alpha-\bar{\alpha}) \int_{0}^{d} \int_{0}^{l} v \bar{v} \mathrm{~d} x \mathrm{~d} y=0 \tag{22}
\end{equation*}
$$

Since v and \bar{v} are eigenfunctions it follows that $\int_{0}^{d} \int_{0}^{l} v \bar{v} \mathrm{~d} x \mathrm{~d} y>0$, and so it follows from Eq. (22) that $\alpha-\bar{\alpha}=0$. It also can be shown elementarily that $\alpha>0$ by considering $\int_{0}^{d} \int_{0}^{l} v A v \mathrm{~d} x \mathrm{~d} y$, where $v(x, y)$ is an eigenfunction belonging to the eigenvalue α, that is, $A v=\alpha v$. Firstly, it should be observed that

$$
\begin{equation*}
\int_{0}^{d} \int_{0}^{l} v A v \mathrm{~d} x \mathrm{~d} y=\alpha \int_{0}^{d} \int_{0}^{l} v^{2}(x, y) \mathrm{d} x \mathrm{~d} y \tag{23}
\end{equation*}
$$

and secondly, it follows (by integrating by parts, and by using the boundary conditions (11)-(14)) that

$$
\begin{align*}
\int_{0}^{d} \int_{0}^{l} v A v \mathrm{~d} x \mathrm{~d} y= & \int_{0}^{d} \int_{0}^{l} v\left(v_{x x x x}+2 v_{x x y y}+v_{y y y y}\right) \mathrm{d} x \mathrm{~d} y \\
= & \int_{0}^{d} \int_{0}^{l}\left(v_{x x}^{2}+2 v_{x y}^{2}+v_{y y}^{2}\right) \mathrm{d} x \mathrm{~d} y \\
& +\bar{p}^{2} \int_{0}^{l}\left(v^{2}(x, d)+v^{2}(x, 0)\right) \mathrm{d} x \tag{24}
\end{align*}
$$

where $\bar{p}^{2}=p^{2} / D$. From Eqs. (23) and (24) it can readily be deduced that $\alpha>0$.
To investigate further the boundary value problem (10)-(14) for $v(x, y)$ the method of separation of variables will be used again, that is, it is assumed that a non-trivial solution of the boundary-value problem (10)-(14) can be found in the form

$$
\begin{equation*}
X(x) Y(y) \tag{25}
\end{equation*}
$$

By substituting Eq. (25) into Eq. (10), it follows that

$$
\begin{equation*}
\frac{X}{X}+2 \frac{\ddot{X}}{X} \frac{Y^{\prime \prime}}{Y}+\frac{Y^{\prime \prime \prime \prime}}{Y}=\alpha \tag{26}
\end{equation*}
$$

where $^{\prime}=\partial(\ldots) / \partial y$ and $=\partial(\ldots) / \partial x$. Generally, it is assumed that the variables in Eq. (26) cannot be separated because of the mixed term $2 \ddot{X} / X Y^{\prime \prime} / Y$. However, using an adapted version of the method of separation of variables (see Refs. [17,18]), this equation can easily be separated by simply differentiating Eq. (26) with respect to x or y. For instance, if Eq. (26) is differentiated with respect to x, it follows that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{X}{X}\right)+2 \frac{Y^{\prime \prime}}{Y} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\ddot{X}}{X}\right)=0
$$

and so,

$$
\begin{equation*}
\frac{Y^{\prime \prime}}{Y}=-\gamma \tag{27}
\end{equation*}
$$

where $\gamma \in \mathbb{C}$ is a separation parameter. From Eq. (27) it follows that $Y^{\prime \prime \prime \prime}=-\gamma Y^{\prime \prime}=\gamma^{2} Y$, and then it can be deduced from Eq. (26) that $X(x)$ and $Y(y)$ have to satisfy

$$
\begin{gather*}
\dddot{X}-2 \gamma \ddot{X}+\left(\gamma^{2}-\alpha\right) X=0, \quad 0<x<l, \tag{28}\\
Y^{\prime \prime}=-\gamma Y, \quad 0<y<d . \tag{29}
\end{gather*}
$$

By substituting Eq. (25) into the boundary conditions (11)-(14) the usual boundary value problem for $X(x)$ and for $Y(y)$ is obtained. It turns out, however, that these boundary value problems only admit the trivial solution. The elementary calculations to obtain this result will be omitted.

So, differentiation with respect to x leads only to the trivial solution. However, if Eq. (26) is differentiated with respect to y it will turn out that non-trivial solutions can be found. When

Eq. (26) is differentiated with respect to y, it follows that

$$
2 \frac{\ddot{X}}{X} \frac{\mathrm{~d}}{\mathrm{~d} y}\left(\frac{Y^{\prime \prime}}{Y}\right)+\frac{\mathrm{d}}{\mathrm{~d} y}\left(\frac{Y^{\prime \prime \prime \prime}}{Y}\right)=0
$$

which can be easily separated, yielding

$$
\begin{equation*}
\frac{\ddot{X}}{X}=-\beta \tag{30}
\end{equation*}
$$

where $\beta \in \mathbb{C}$ is a separation parameter. From Eq. (30) it follows that $\dddot{X}=-\beta \ddot{X}=\beta^{2} X$, and then it can be deduced from Eq. (26) and the boundary conditions (12)-(14) that $Y(y)$ has to satisfy

$$
\begin{equation*}
Y^{\prime \prime \prime \prime}-2 \beta Y^{\prime \prime}+\left(\beta^{2}-\alpha\right) Y=0 \tag{31}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{gather*}
D\left(Y^{\prime \prime \prime}-(2-v) \beta Y^{\prime}\right)=-p^{2} Y \quad \text { for } y=0 \tag{32}\\
D\left(Y^{\prime \prime \prime}-(2-v) \beta Y^{\prime}\right)=p^{2} Y \quad \text { for } y=d \tag{33}\\
Y^{\prime \prime}-\beta v Y=0 \quad \text { for } y=0, d \tag{34}
\end{gather*}
$$

It follows from Eq. (11) that $X(x)$ also has to satisfy

$$
\begin{equation*}
X(0)=X(l)=\ddot{X}(0)=\ddot{X}(l)=0 \tag{35}
\end{equation*}
$$

The non-trivial solutions of the differential equation (30) subject to the boundary conditions (35) are given by

$$
\begin{equation*}
X(x)=\gamma_{n} \sin \left(\sqrt{\beta_{n}} x\right), \quad \beta_{n}=\left(\frac{n \pi}{l}\right)^{2} \tag{36}
\end{equation*}
$$

with $n \in \mathbb{Z}^{+}$, and where γ_{n} is an arbitrary constant. The characteristic equation for ODE (31) now becomes

$$
\begin{equation*}
k^{4}-2 \beta_{n} k^{2}+\beta_{n}^{2}-\alpha=0 \Leftrightarrow\left(k^{2}-\beta_{n}\right)^{2}=\alpha . \tag{37}
\end{equation*}
$$

In this section it has already been shown that $\alpha>0$. So, only the following three cases have to be considered in Eq. (37)

$$
\alpha>\beta_{n}^{2}, \quad 0<\alpha<\beta_{n}^{2} \quad \text { and } \quad \alpha=\beta_{n}^{2}
$$

2.1. The case $\alpha>\beta_{n}^{2}$

The solutions of the characteristic equation (37) in this case will be

$$
\sqrt{\sqrt{\alpha}+\beta_{n}}, \quad-\sqrt{\sqrt{\alpha}+\beta_{n}}, \quad \mathrm{i} \sqrt{\sqrt{\alpha}-\beta_{n}} \quad \text { and } \quad-\mathrm{i} \sqrt{\sqrt{\alpha}-\beta_{n}}
$$

and the solution of the differential equation (31) can be written in the form

$$
\begin{align*}
Y(y)= & C_{1} \cosh \left(\sqrt{\sqrt{\alpha}+\beta_{n}} y\right)+C_{2} \sinh \left(\sqrt{\sqrt{\alpha}+\beta_{n}} y\right) \\
& +C_{3} \cos \left(\sqrt{\sqrt{\alpha}-\beta_{n}} y\right)+C_{4} \sin \left(\sqrt{\sqrt{\alpha}-\beta_{n}} y\right) \tag{38}
\end{align*}
$$

where C_{1}, C_{2}, C_{3}, and C_{4} are constants of integration.
By substituting Eq. (38) into the four boundary conditions (32)-(34) a system of four equations for C_{1}, C_{2}, C_{3}, and C_{4} is obtained. To find non-trivial solutions for $Y(y)$ the determinant of the corresponding coefficient matrix should be set equal to zero, that is,

$$
\left|\begin{array}{cccc}
a^{2}-v \beta_{n} & 0 & -\left(r^{2}+v \beta_{n}\right) & 0 \tag{39}\\
\left(a^{2}-v \beta_{n}\right) \cosh (a d) & \left(a^{2}-v \beta_{n}\right) \sinh (a d) & -\left(r^{2}+v \beta_{n}\right) \cos (r d) & -\left(r^{2}+v \beta_{n}\right) \sin (r d) \\
\bar{p}^{2} & f & \bar{p}^{2} & -g \\
f \sinh (a d)-\bar{p}^{2} \cosh (a d) & f \cosh (a d)-\bar{p}^{2} \sinh (a d) & g \sin (r d)-\bar{p}^{2} \cos (r d) & -g \cos (r d)-\bar{p}^{2} \sin (r d)
\end{array}\right|=0,
$$

where $a=\sqrt{\sqrt{\alpha}+\beta_{n}}, r=\sqrt{\sqrt{\alpha}-\beta_{n}}, f=a\left(a^{2}-(2-v) \beta_{n}\right.$), and $g=r\left(r^{2}+(2-v) \beta_{n}\right)$. From Eq. (39) the eigenvalues α can be calculated. The eigenvalues α depend on the parameters n, \bar{p}^{2}, v, the length l, and the width d of the rectangular plate. When the parameter \bar{p}^{2} tends to zero, the boundary conditions correspond to the case for the plate with two opposite edges simply supported and the other two free. When the parameter \bar{p}^{2} tends to infinity the boundary conditions correspond to the case for a plate with all edges simply supported.

One calculates numerically from Eq. (39) some eigenvalues α for some values of the parameters. Some of the numerical approximations for α up to 50000 are given in Tables 1 and 2 .

2.2. The case $\alpha<\beta_{n}^{2}$

In this case the solutions of the characteristic equation (37) will be

$$
\sqrt{\sqrt{\alpha}+\beta_{n}}, \quad-\sqrt{\sqrt{\alpha}+\beta_{n}}, \quad \sqrt{\beta_{n}-\sqrt{\alpha}}, \quad-\sqrt{\beta_{n}-\sqrt{\alpha}}
$$

and the solution of the differential equation (31) can be written in the form

$$
\begin{align*}
Y(y)= & G_{1} \cosh \left(\sqrt{\sqrt{\alpha}+\beta_{n}} y\right)+G_{2} \sinh \left(\sqrt{\sqrt{\alpha}+\beta_{n}} y\right) \\
& +G_{3} \cosh \left(\sqrt{\beta_{n}-\sqrt{\alpha} y}\right)+G_{4} \sinh \left(\sqrt{\beta_{n}-\sqrt{\alpha}} y\right) \tag{40}
\end{align*}
$$

where G_{1}, G_{2}, G_{3}, and G_{4} are constants of integration.
By substituting Eq. (38) into the four boundary conditions (32)-(34) a system of four equations for G_{1}, G_{2}, G_{3}, and G_{4} is obtained. To find non-trivial solutions for $Y(y)$ the determinant of the

Table 1
Approximations of the eigenvalues α
\(\left.\begin{array}{ccrlrl}\hline n \& \& \& \& \&

\hline v=0.3, l=10, d=1, \bar{p}^{2}=1 \& \& \& \&

1 \& 1.9861 \& 7.6513 \& 516.1518 \& 3829.3326 \& 14657.3213\end{array}\right]\)| 40001.3080 |
| :--- |
| 2 |

Table 1 (continued)

n						
9	81.5997	235.6833	1192.7194	5281.3557	17184.4577	43914.8507
10	113.3323	294.8280	1354.5169	5626.2753	17785.4892	44845.5433
$\nu=0.46, l=10, d=1, \bar{p}^{2}=100$	475.0370	1368.5399	4705.0375	15489.0254	40811.9114	
1	69.6196	480.9335	1385.0898	4750.7959	15575.3462	40949.6487
2	73.0771	79.0445	491.0580	1413.1931	4827.4891	15719.6021
3	87.8447	505.8623	1453.6163	4935.7557	15922.3743	41179.5956
4	99.9592	525.9896	1507.4054	5076.4798	16184.4744	41902.3286
5	116.0529	552.2844	1575.8641	5250.7839	16506.9433	42429.6078
6	137.0004	585.8012	1660.5304	5460.0203	16891.0493	43036.4538
7	163.9098	627.8138	1763.1549	5705.7649	17338.2866	43740.6841
8	198.1431	679.8229	1885.6846	5989.8110	17850.3741	44544.0172
9	241.3291	743.5613	2030.2517	6314.1662	18429.2540	45448.3979
10						

Table 2
Approximations of the eigenvalues α for $v=0.3, l=10$

n	$d=0.1, \bar{p}^{2}=1$	$d=0.1, \bar{p}^{2}=10$		
	20.0095	225.8181		199.9985
2	20.1454	723.3859	200.1480	1263.8022
3	20.7266	1553.0419	200.7735	2093.0118
4	22.2851	2715.3508	202.3940	3255.3083
5	25.5660	4211.1029	205.7544	4751.0444
6	31.5277	6041.3146	211.8131	6581.2367
7	41.3424	8207.2282	221.7421	8747.1272
8	56.3963	10710.3116	236.9272	11250.1842
9	78.2898	13552.2590	258.9689	14092.1016

corresponding coefficient matrix should be set equal to zero, that is,
$\left|\begin{array}{cccc}a^{2}-v \beta_{n} & 0 & \left(c^{2}-v \beta_{n}\right) & 0 \\ \left(a^{2}-v \beta_{n}\right) \cosh (a d) & \left(a^{2}-v \beta_{n}\right) \sinh (a d) & \left(c^{2}-v \beta_{n}\right) \cosh (c d) & \left(c^{2}-v \beta_{n}\right) \sinh (c d) \\ \bar{p}^{2} & f & h \\ f \sinh (a d)-\bar{p}^{2} \cosh (a d) & f \cosh (a d)-\bar{p}^{2} \sinh (a d) & h \sinh (c d)-\bar{p}^{2} \cosh (c d) & h \cosh (c d)-\bar{p}^{2} \sinh (c d)\end{array}\right|=0$,
where $a=\sqrt{\sqrt{\alpha}+\beta_{n}}, \quad c=\beta_{n}-\sqrt{\sqrt{\alpha}}, f=a\left(a^{2}-(2-v) \beta_{n}\right)$, and $h=c\left(c^{2}-(2-v) \beta_{n}\right)$. The eigenvalues α can be calculated from Eq. (41). Some numerical approximations of α are given in Table 3 for some values of the parameters.

Table 3
Approximations of the eigenvalues α

n	$l=10, d=1, \bar{p}^{2}=1$					
	$v=0.3$	$v=0.4$	$v=0.5$	$v=0.6$	$v=0.8$	
5					5.0474	
6		23.1493	12.5524	11.4163	8.1418	
7		28.1964	35.6909	19.4993	13.3306	
8	62.9993	60.2307	56.2396	32.1065	21.4984	
9	95.1879	91.1683	85.3165	50.7482	33.7101	
10	138.7581	133.1580	124.9248	113.1611	51.2067	75.3987
11	196.1310	188.5811	177.3735	161.3620	107.8584	136.9501
12	269.9607	260.0502	245.1999	223.7315	150.3134	231.0353
13	363.1342	350.4097	331.1689	303.0322	204.6407	294.8865
14	478.7715	462.7357	438.2735	402.1001	272.8618	372.4121
15	620.2261	600.3362	569.7342	523.9882	357.1389	465.6039
16	791.0843	766.7508	729.9995	671.9661	459.7719	576.6301
17	995.1661	965.7514	919.7457	849.5199	583.1959	707.8135
18	1236.5247	1201.3419	1145.8771	1060.3514	729.9795	861.6300
19						

2.3. The case $\alpha=\beta_{n}^{2}$

In this case the characteristic equation (37) becomes

$$
\begin{equation*}
k^{2}\left(k^{2}-2 \beta_{n}\right)=0 \tag{42}
\end{equation*}
$$

and its solutions are

$$
k_{1,2}=0, \quad k_{3,4}= \pm \sqrt{2 \beta_{n}}
$$

The solution of the differential equation (31) is then given by

$$
\begin{equation*}
Y(y)=S_{1}+S_{2} y+S_{3} \cosh \left(\sqrt{2 \beta_{n}} y\right)+S_{4} \sinh \left(\sqrt{2 \beta_{n}} y\right) \tag{43}
\end{equation*}
$$

where S_{1}, S_{2}, S_{3}, and S_{4} are constants of integration. As in the previous two cases the following determinant is similarly obtained when looking for non-trivial solutions of the boundary value problem for $Y(y)$ (where $Y(y)$ is given by Eq. (43)). As in the two previous cases using boundary conditions (32)-(34) the system of the four equations for the determination of eigenvalues is received. This system has a non-trivial solution when the determinant of the coefficient matrix for the unknown quantities $S_{i}=0, i=1,2,3,4$ is equal to zero. In this case the determinant has
the following form:

$$
\left|\begin{array}{cccc}
-v \beta_{n} & 0 & (2-v) \beta_{n} & 0 \tag{44}\\
-v \beta_{n} & -v \beta_{n} d & (2-v) \beta_{n} \cosh \left(b_{1} d\right) & (2-v) \beta_{n} \sinh \left(b_{1} d\right) \\
\bar{p}^{2} & -(2-v) \beta_{n} & \bar{p}^{2} & v \beta_{n} b_{1} \\
-\bar{p}^{2} & -\left(\bar{p}^{2} d+(2-v) \beta_{n}\right) & v \beta_{n} b_{1} \sinh \left(b_{1} d\right)-\bar{p}^{2} \cosh \left(b_{1} d\right) & v \beta_{n} b_{1} \cosh \left(b_{1} d\right)-\bar{p}^{2} \sinh \left(b_{1} d\right)
\end{array}\right|=0,
$$

where $b_{1}=\sqrt{2 \beta_{n}}$. Solutions exist for some special values of the parameters. For example for $l=100, d=0.1, \bar{p}^{2}=1, v=0.6$ solutions for α exist for the first five modes. For $l=100, d=1$, $\bar{p}^{2}=1, v=0.6$ solutions exist for the first three modes and these solutions for α will be exactly the same as for $d=0.1$. This is due to the fact that $\alpha=\beta_{n}^{2}=(n \pi / l)^{4}$ and that α depends only on n and l. The other parameters such as v and \bar{p}^{2} will only determine the existence of non-trivial solutions $Y(y)$.

3. Conclusions and remarks

In this paper the free vibrations of a rectangular plate with two opposite sides simply supported and the other two densely attached to linear springs have been studied. This combination of boundary conditions seems not to be considered in the literature before. This rectangular plate model is one of the simplest models to describe a suspension bridge. For the rectangular plate model the relationship between the plate parameters and the frequencies has been obtained by using an adapted version of the method of separation of variables (see Ref. [18]). This result is important to investigate the wind-induced oscillations of a rectangular plate. The relationship between the plate parameters and the frequencies has been obtained analytically. For some values of the parameters numerical approximations of the frequencies are given.

References

[1] A.W. Leissa, Vibration of plates, NASA SP-160, 1969.
[2] A.W. Leissa, The free vibration of rectangular plates, Journal of Sound and Vibration 31 (3) (1973) 257-293.
[3] A.W. Leissa, P.A.A. Laura, R.H. Guiterrez, Vibrations of rectangular plates with nonuniform elastic edge supports, Journal of Applied Mechanics 47 (1980) 891-895.
[4] D.J. Gorman, Free Vibration Analysis of Rectangular Plates, Elsevier, New York, 1982.
[5] D.J. Gorman, Vibration Analysis of Plates by the Superposition Method, World Scientific, Singapore, 1999.
[6] T. Sakata, K. Hokosawa, Vibration of clamped orthotropic rectangular plates, Journal of Sound and Vibration 125 (1988) 439-439.
[7] P.A.A. Laura, R.O. Grossi, Transverse vibration of a rectangular plate elastically restrained against translation and rotation, Journal of Sound and Vibration 75 (1981) 101-107.
[8] P.A.A. Laura, L.E. Luisoni, C.P. Filipich, A note on the determination of the fundamental frequency of vibration of thin rectangular plates with edges possessing different rotation flexibility coefficients, Journal of Sound and Vibration 155 (1997) 327-333.
[9] W.L. Li, M. Daniels, A Fourier series method for the vibrations of elastically restrained plates arbitrarily loaded with springs and masses, Journal of Sound and Vibration 252 (4) (2002) 768-781.
[10] A.C. Lazer, P.J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Review 32 (1990) 537-578.
[11] P.J. McKenna, W. Walter, Traveling waves in a suspension bridge, SIAM Journal on Applied Mathematics 50 (1990) 702-715.
[12] W.T. van Horssen, An asymptotic theory for a class of initial-boundary value problems for weakly nonlinear wave equations with an application to a model of the galloping oscillations of overhead transmission lines, SIAM Journal on Applied Mathematics 48 (1988) 1227-1243.
[13] G.J. Boertjens, W.T. van Horssen, On mode interactions for a weakly nonlinear beam equation, Nonlinear Dynamics 17 (1998) 23-40.
[14] G.J. Boertjens, W.T. van Horssen, An asymptotic theory for a weakly nonlinear beam equation with a quadratic perturbation, SIAM Journal on Applied Mathematics 60 (2) (2000) 602-632.
[15] Q.H. Choi, T. Jung, On periodic solutions for the nonlinear suspension bridge equation, Differential Integral Equations 4 (1991) 383-396.
[16] G. Tajčovâ, Mathematical models of suspension bridges, Applications of Mathematics 42 (6) (1997) 451-480.
[17] W.T. van Horssen, M.A. Zarubinskaya, On an elastic dissipation model for a cantilevered beam, Quarterly of Applied Mathematics 61 (3) (2003) 565-573.
[18] W.T. van Horssen, On the applicability of the method of separation of variables for partial difference equations, Journal of Difference Equations and Applications 8 (1) (2002) 53-60.

[^0]: *Corresponding author. Tel.: +31-15-278-4109; fax: +31-15-278-7209.
 E-mail addresses: maria@dutind4.twi.tudelft.nl (M.A. Zarubinskaya), w.t.vanhorssen@its.tudelft.nl (W.T. van Horssen).

