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Abstract

In this paper an initial-boundary value problem for a plate equation will be studied. This initial-
boundary value problem can be regarded as a rather simple model describing free oscillations of a
suspension bridge. The suspension bridge is modelled as a rectangular plate with two opposite sides simply
supported and the other sides attached to linear springs. An adapted version of the method of separation of
variables is used to find the eigenfrequencies for this plate configuration.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Plates of various geometries, i.e., circular, annular, rectangular, polygonal, etc., and of
orthotropic material are extensively used in engineering applications. These plates are widely used
in modern aerospace technology, naval structural engineering, aircraft structures, and so on. A lot
of literature exists for the free vibrations of rectangular plates. In most of these papers the classical
theory for isotropic, homogeneous, thin plates with uniform thickness is used and the differential
equation to describe the vibrations of the plate is given by

Dðuxxxx þ 2uxxyy þ uyyyyÞ þ r
@2u

@t2
¼ 0; ð1Þ
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where D ¼ Eh3=12ð1� n2Þ is the flexural rigidity, E is Young’s modulus, n is Poisson’s ratio
with 0ono1; r is the mass density per unit area of the plate surface, h is the thickness of the
plate, t is time, and uðx; y; tÞ is the displacement of the plate in the z-direction. The majority of
literature deals with classical boundary conditions representing clamped, simply supported, or
free edges, and only a small number deals with edges which are restrained against translation or/
and rotation, or with other non-classical boundary conditions. It has been observed for
rectangular plates by Leissa in Refs. [1–3] that there exist 21 distinct cases which involve all
possible combinations of classical boundary conditions. For six cases having two opposite sides
simply supported, it is well known that exact solutions exist which are, in fact, the extensions
of Voight’s work. In Ref. [2] Leissa gives a survey of research on rectangular plate problems
up to 1970. For a further overview up to the beginning of this century the reader is referred to
Refs. [4–9].
One of the most commonly used methods in free vibration analysis of plates is the Rayleigh–

Ritz energy technique, where appropriate functions associated with various boundary conditions
are chosen to describe the lateral deflection of the deformed plates. The chosen functions almost
always do not satisfy the governing differential equation. Also, the functions may or may not
satisfy all of the boundary conditions. Thus, the results obtained by the Rayleigh–Ritz method are
approximate. Gorman in Refs. [4,5] succeeded in solving approximately free vibration problems
of plates for various geometries and boundary conditions. Compared to the Rayleigh–Ritz
method, the superposition technique in Refs. [4,5] allows one to obtain an analytical form of the
solution which satisfies the governing differential equation and the boundary conditions. Sakata
and Hosokawa [6] studied the forced and free vibration of clamped orthotropic plates by using a
double trigonometric series. During the last 40 years the free vibrations of rectangular plates were
studied intensively (see, for instance, Refs. [4–9], and the references in those papers). In this paper
the free vibrations of a rectangular plate with two opposite edges simply supported, and linear
springs densely attached to the two other edges will be studied. This boundary support will lead to
boundary conditions which seem not to be studied in the existing literature. Flexible structures,
like tall buildings and suspension bridges, are subjected to oscillations due to windforces or
various other causes. Simple models which describe these oscillations are given in the form of
weakly non-linear second and fourth order partial differential equations, as can be seen in
Refs. [10–16]. Usually asymptotic methods can be used to construct approximations for the
solutions of these wave or beam equations. In Ref. [16] a survey of the literature on oscillations in
suspension bridges is given. A simple way to model the behavior of a suspension bridge is to
describe it as a vibrating one-dimensional beam with simply supported ends. In Ref. [16] the other
two dimensions are not taken into account because the dimensions of the bridge in these
directions are assumed to be small compared to the length of the bridge. When the width of the
bridge is taken into account a plate equation like (1) is obtained. To study, for instance, wind-
induced oscillations of suspension bridges one can of course use plate equations to describe the
displacements of the deck of the bridge. However, to investigate these weakly non-linear wind-
induced vibrations it is necessary first to know the related linear vibrations of the rectangular plate
with the boundary conditions as described before and as indicated in Fig. 1. For that reason these
linear vibrations will be studied in this paper. Using the results as obtained in this paper one can
start to investigate the weakly non-linear vibrations of a plate in a windfield as model for the
wind-induced oscillations of a suspension bridge.
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2. The mathematical analysis of the problem

In this section the following initial-boundary value problem for the displacement function
uðx; y; tÞ will be considered:

utt þ D1ðuxxxx þ 2uxxyy þ uyyyyÞ ¼ 0; 0oxol; 0oyod; t > 0; ð2Þ

uðx; y; 0Þ ¼ u0ðx; yÞ; utðx; y; 0Þ ¼ u1ðx; yÞ; 0oxol; 0oyod; ð3Þ

uð0; y; tÞ ¼ uðl; y; tÞ ¼ uxxð0; y; tÞ ¼ uxxðl; y; tÞ ¼ 0; 0oyod; ð4Þ

Dðuyyy þ ð2� nÞuxxyÞ ¼ �p2u for y ¼ 0; 0oxol; ð5Þ

Dðuyyy þ ð2� nÞuxxyÞ ¼ p2u for y ¼ d; 0oxol; ð6Þ

uyy þ nuxx ¼ 0 for y ¼ 0; y ¼ d; 0oxol; ð7Þ

where D1 ¼ D=r; and where p2u in Eqs. (5)–(6) represents the linear restoring force of the springs
acting on the boundaries of the plate at y ¼ 0 and d (see also Fig. 1). The usually applied plate
sign convention for the shearing force acting on an element of the plate explains the difference in
sign of the term p2u in the boundary conditions (5)–(6). It is assumed that there are no distributed
bending moments acting along the edges of plate at y ¼ 0 and d (see Eq. (7)). It is also assumed
that the plate is simply supported at the edges x ¼ 0 and l (see Eq. (4)). The initial displacement
and the initial velocity of the plate in z-direction are given by u0ðx; yÞ and u1ðx; yÞ; respectively (see
Eq. (3)). The method of separation of variables will be used to find non-trivial solutions of the
boundary value problem (2), (4)–(7), that is, non-trivial solutions in the form

TðtÞvðx; yÞ ð8Þ
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Fig. 1. A model of a suspension bridge.
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will be constructed for the boundary value problem (2), (4)–(7). By substituting Eq. (8) into
Eq. (2) and by dividing the so-obtained equation by TðtÞvðx; yÞ; it follows that

T 00

T
þ D1

vxxxx þ 2vxxyy þ vyyyy

v
¼ 0:

From this equation the following two equations are obtained:

T 00

T
¼ �aD1; ð9Þ

vxxxx þ 2vxxyy þ vyyyy ¼ av; ð10Þ

where aAC is a separation parameter. From the boundary conditions (4)–(7), it follows that v has
to satisfy

vð0; yÞ ¼ vðl; yÞ ¼ vxxð0; yÞ ¼ vxxðl; yÞ ¼ 0; 0oyod; ð11Þ

Dðvyyy þ ð2� nÞvxxyÞ ¼ �p2v for y ¼ 0; 0oxol; ð12Þ

Dðvyyy þ ð2� nÞvxxyÞ ¼ p2v for y ¼ d; 0oxol; ð13Þ

vyy þ nvxx ¼ 0 for y ¼ 0 and y ¼ d; 0oxol: ð14Þ

First, it will be shown that the non-trivial solutions of the boundary value problem (10)–(14), that
is, the eigenfunctions of Eqs. (10)–(14) are mutually orthogonal on 0oxol and 0oyod: Let
v1ðx; yÞ and v2ðx; yÞ be two different eigenfunctions belonging to the different eigenvalues a1 and
a2; respectively. Thus

v1xxxx þ 2v1xxyy þ v1yyyy ¼ a1v1;

v2xxxx þ 2v2xxyy þ v2yyyy ¼ a2v2; ð15Þ

where both functions v1 and v2 satisfy the boundary conditions (11)–(14). It will be shown that

ða2 � a1Þ
Z d

0

Z l

0

v1v2 dx dy ¼ 0: ð16Þ

Let the differential operator A be given by

A ¼
@4

@x4
þ 2

@4

@x2@y2
þ

@4

@y4
; ð17Þ

and consider Z d

0

Z l

0

ðv1Av2 � v2Av1Þ dx dy: ð18Þ

By using Eq. (15) it follows thatZ d

0

Z l

0

ðv1Av2 � v2Av1Þ dx dy ¼ ða2 � a1Þ
Z d

0

Z l

0

v1v2 dx dy: ð19Þ
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On the other hand, by two times integrating by parts it follows from Eq. (18) thatZ d

0

Z l

0

ðv1Av2 � v2Av1Þ dx dy ¼
Z d

0

Z l

0

ðv1xxv2xx þ 2v1xyv2xy þ v1yyv2yyÞ dx dy

þ
Z l

0

ð2v1v2xxy þ v1v2yyy � v1yv2yyÞjdy¼0 dx

�
Z d

0

Z l

0

ðv1xxv2xx þ 2v1xyv2xy þ v1yyv2yyÞ dx dy

�
Z l

0

ð2v2v1xxy þ v2v1yyy � v2yv1yyÞjdy¼0 dx: ð20Þ

Using the boundary conditions (14) it follows that the integralZ l

0

ðv2yv1yy � v1yv2yyÞj
d
y¼0 dx ¼ �

Z l

0

nðv2yv1xx � v1yv2xxÞj
d
y¼0 dx:

Integrating the integral two times by parts, and by using the boundary conditions (11)–(14) it
follows that Z l

0

ðv2yv1yy � v1yv2yyÞj
d
y¼0 dx ¼

Z l

0

nðv2v1xxy � v1v2xxyÞj
d
y¼0 dx:

After substituting the last expression and the boundary conditions (12), and (13) into Eq. (20), it
finally follows that Z d

0

Z l

0

ðv1Av2 � v2Av1Þ dx dy ¼ 0: ð21Þ

From Eqs. (19) and (21) it follows that Eq. (16) is true, and therefore v1 and v2 are orthogonal for
a1aa2:
Now it will be shown that the eigenvalue a is real. Let vðx; yÞ be an eigenfunction belonging to

the eigenvalue a; so Av ¼ av: Consider Av ¼ av: Then, replacing in Eqs. (19) and (21) the
functions v1 and v2 by v and %v; respectively, and using the fact that Av ¼ av and A%v ¼ %a%v in
Eqs. (19) and (21), it similarly follows that

ða� %aÞ
Z d

0

Z l

0

v%v dx dy ¼ 0: ð22Þ

Since v and %v are eigenfunctions it follows that
R d

0

R l

0 v%v dx dy > 0; and so it follows from Eq. (22)
that a� %a ¼ 0: It also can be shown elementarily that a > 0 by considering

R d

0

R l

0 vAv dx dy; where
vðx; yÞ is an eigenfunction belonging to the eigenvalue a; that is, Av ¼ av: Firstly, it should be
observed that Z d

0

Z l

0

vAv dx dy ¼ a
Z d

0

Z l

0

v2ðx; yÞ dx dy; ð23Þ
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and secondly, it follows (by integrating by parts, and by using the boundary conditions (11)–(14))
that Z d

0

Z l

0

vAv dx dy ¼
Z d

0

Z l

0

vðvxxxx þ 2vxxyy þ vyyyyÞ dx dy

¼
Z d

0

Z l

0

ðv2xx þ 2v2xy þ v2yyÞ dx dy

þ %p
2

Z l

0

ðv2ðx; dÞ þ v2ðx; 0ÞÞ dx; ð24Þ

where %p2 ¼ p2=D: From Eqs. (23) and (24) it can readily be deduced that a > 0:
To investigate further the boundary value problem (10)–(14) for vðx; yÞ the method of

separation of variables will be used again, that is, it is assumed that a non-trivial solution of the
boundary-value problem (10)–(14) can be found in the form

X ðxÞY ðyÞ: ð25Þ

By substituting Eq. (25) into Eq. (10), it follows that

X
::::

X
þ 2

.X

X

Y 00

Y
þ

Y 0000

Y
¼ a; ð26Þ

where 0 ¼ @ð:::Þ=@y and � ¼ @ð:::Þ=@x: Generally, it is assumed that the variables in Eq. (26) cannot
be separated because of the mixed term 2 .X=X Y 00=Y : However, using an adapted version of the
method of separation of variables (see Refs. [17,18]), this equation can easily be separated by
simply differentiating Eq. (26) with respect to x or y: For instance, if Eq. (26) is differentiated with
respect to x; it follows that

d

dx

X
::::

X

 !
þ 2

Y 00

Y

d

dx

.X

X

� �
¼ 0;

and so,

Y 00

Y
¼ �g; ð27Þ

where gAC is a separation parameter. From Eq. (27) it follows that Y 0000 ¼ �gY 00 ¼ g2Y ; and then
it can be deduced from Eq. (26) that X ðxÞ and Y ðyÞ have to satisfy

X � 2
::::

g .X þ ðg2 � aÞX ¼ 0; 0oxol; ð28Þ

Y 00 ¼ �gY ; 0oyod: ð29Þ

By substituting Eq. (25) into the boundary conditions (11)–(14) the usual boundary value
problem for X ðxÞ and for Y ðyÞ is obtained. It turns out, however, that these boundary value
problems only admit the trivial solution. The elementary calculations to obtain this result will be
omitted.
So, differentiation with respect to x leads only to the trivial solution. However, if Eq. (26) is

differentiated with respect to y it will turn out that non-trivial solutions can be found. When
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Eq. (26) is differentiated with respect to y; it follows that

2
.X

X

d

dy

Y 00

Y

� �
þ

d

dy

Y 0000

Y

� �
¼ 0;

which can be easily separated, yielding

.X

X
¼ �b; ð30Þ

where bAC is a separation parameter. From Eq. (30) it follows that X
::::

¼ �b .X ¼ b2X ; and then it
can be deduced from Eq. (26) and the boundary conditions (12)–(14) that Y ðyÞ has to
satisfy

Y 0000 � 2bY 00 þ ðb2 � aÞY ¼ 0 ð31Þ

subject to the boundary conditions

DðY 000 � ð2� nÞbY 0Þ ¼ �p2Y for y ¼ 0; ð32Þ

DðY 000 � ð2� nÞbY 0Þ ¼ p2Y for y ¼ d; ð33Þ

Y 00 � bnY ¼ 0 for y ¼ 0; d: ð34Þ

It follows from Eq. (11) that X ðxÞ also has to satisfy

X ð0Þ ¼ X ðlÞ ¼ .Xð0Þ ¼ .XðlÞ ¼ 0: ð35Þ

The non-trivial solutions of the differential equation (30) subject to the boundary conditions (35)
are given by

X ðxÞ ¼ gn sin
ffiffiffiffiffi
bn

p
x

	 

; bn ¼

np
l

	 
2
ð36Þ

with nAZþ; and where gn is an arbitrary constant. The characteristic equation for ODE (31) now
becomes

k4 � 2bnk2 þ b2n � a ¼ 0 3 ðk2 � bnÞ
2 ¼ a: ð37Þ

In this section it has already been shown that a > 0: So, only the following three cases have to be
considered in Eq. (37)

a > b2n; 0oaob2n and a ¼ b2n:

2.1. The case a > b2n

The solutions of the characteristic equation (37) in this case will beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
þ bn

q
; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
þ bn

q
; i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
� bn

q
and � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
� bn

q
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and the solution of the differential equation (31) can be written in the form

Y ðyÞ ¼C1 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
þ bn

q
y

� �
þ C2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
þ bn

q
y

� �

þ C3 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
� bn

q
y

� �
þ C4 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
� bn

q
y

� �
; ð38Þ

where C1;C2;C3; and C4 are constants of integration.
By substituting Eq. (38) into the four boundary conditions (32)–(34) a system of four equations

for C1; C2; C3; and C4 is obtained. To find non-trivial solutions for Y ðyÞ the determinant of the
corresponding coefficient matrix should be set equal to zero, that is,

a2 � nbn 0 �ðr2 þ nbnÞ 0

ða2 � nbnÞ coshðadÞ ða2 � nbnÞ sinhðadÞ �ðr2 þ nbnÞ cosðrdÞ �ðr2 þ nbnÞ sinðrdÞ

%p2 f %p2 �g

f sinhðadÞ � %p2 coshðadÞ f coshðadÞ � %p2 sinhðadÞ g sinðrdÞ � %p2 cosðrdÞ �g cosðrdÞ � %p2 sinðrdÞ

���������

���������
¼ 0;

ð39Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
þ bn

q
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
� bn

q
; f ¼ aða2 � ð2� nÞbnÞ; and g ¼ rðr2 þ ð2� nÞbnÞ: From

Eq. (39) the eigenvalues a can be calculated. The eigenvalues a depend on the parameters n; %p2; n;
the length l; and the width d of the rectangular plate. When the parameter %p2 tends to zero, the
boundary conditions correspond to the case for the plate with two opposite edges simply
supported and the other two free. When the parameter %p2 tends to infinity the boundary
conditions correspond to the case for a plate with all edges simply supported.
One calculates numerically from Eq. (39) some eigenvalues a for some values of the parameters.

Some of the numerical approximations for a up to 50 000 are given in Tables 1 and 2.

2.2. The case aob2n

In this case the solutions of the characteristic equation (37) will beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
þ bn

q
; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
þ bn

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn �

ffiffiffi
a

pq
; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn �

ffiffiffi
a

pq

and the solution of the differential equation (31) can be written in the form

Y ðyÞ ¼G1 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
þ bn

q
y

� �
þ G2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
þ bn

q
y

� �

þ G3 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn �

ffiffiffi
a

pq
y

� �
þ G4 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn �

ffiffiffi
a

pq
y

� �
; ð40Þ

where G1;G2;G3; and G4 are constants of integration.
By substituting Eq. (38) into the four boundary conditions (32)–(34) a system of four equations

for G1; G2; G3; and G4 is obtained. To find non-trivial solutions for Y ðyÞ the determinant of the
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Table 1

Approximations of the eigenvalues a

n

n ¼ 0:3; l ¼ 10; d ¼ 1; %p2 ¼ 1

1 1.9861 7.6513 516.1518 3829.3326 14657.3213 40001.3080

2 2.1484 12.7612 538.9518 3882.7911 14752.4921 40149.9413

3 2.7739 21.6547 577.3297 3972.2310 14911.4787 40398.0399

4 4.4052 34.8982 631.8441 4098.1669 15134.8325 40746.1682

5 7.8156 53.2853 703.2675 4261.3209 15423.3239 41195.1144

6 14.0147 77.8385 792.5844 4462.6248 15777.9403 41745.8900

7 24.2497 109.8092 900.9942 4703.2228 16199.8847 42399.7278

8 40.0047 150.6790 1029.9158 4984.4739 16690.5743 43158.0810

9 202.1601 1180.9932 5307.9560 17251.6399 44022.6214

10 266.1959 1356.1002 5675.4693 17884.9256 44995.2379

n ¼ 0:43; l ¼ 10; d ¼ 1; %p2 ¼ 1

1 1.9893 7.3471 515.1976 3827.7181 14655.0633 39998.4052

2 2.1504 11.5408 535.1470 3876.7395 14743.4633 40138.3321

3 2.7397 18.8953 568.8103 3957.7389 14891.1757 40371.9266

4 4.2548 29.9595 616.7939 4072.4616 15098.7686 40699.7629

5 7.4164 45.4983 679.9250 4221.2733 15367.0360 41122.6440

n ¼ 0:3; l ¼ 10; d ¼ 1; %p2 ¼ 1

6 13.1786 66.5027 759.2433 4405.1593 15696.9969 41641.6012

7 94.1809 855.9993 4625.3260 16089.8944 42257.8931

8 129.9639 971.6561 4883.2029 16547.1949 42973.0051

9 175.5054 1067.8944 5180.4432 17070.5871 43788.6480

10 232.6826 1266.6159 5518.9257 17661.9817 44706.7578

n ¼ 0:5; l ¼ 10; d ¼ 1; %p2 ¼ 1

1 1.9909 7.1830 514.6837 3826.8486 14653.8474 39999.8422

2 2.1494 10.8793 533.0951 3872.8643 14738.6010 40132.0807

3 2.7106 17.3876 564.2076 3949.9290 14880.2403 40357.8637

4 4.1396 27.2307 608.6426 4058.6003 15079.3394 40674.7693

5 7.1170 41.1420 667.2432 4199.6589 15336.7011 41083.6059

6 60.0667 741.0620 4374.1082 15653.3555 41585.4120

7 85.1638 831.3573 4583.1744 16030.5590 42181.4549

8 117.8072 939.5938 4828.3068 16649.7934 42873.2305

9 159.5872 1067.4469 5111.1785 16972.7648 43662.4623

10 212.3121 1216.8074 5433.6866 17541.4029 44551.3210

n ¼ 0:4; l ¼ 10; d ¼ 1; %p2 ¼ 10

1 17.2169 60.0325 589.4929 3901.0656 14728.0124 40071.2956

2 17.7689 64.4837 609.6992 3950.7358 14817.9624 40213.2310

3 18.9723 72.2716 643.8309 4033.8802 14968.2555 40450.1715

4 21.2800 83.9501 692.5434 4151.0405 15179.4562 40782.6888

5 25.3670 100.2956 756.7155 4302.9762 15452.3532 41211.5827

6 32.1501 122.3071 837.4325 4490.6657 15787.9589 41737.8801

7 42.7963 151.2070 935.9796 4715.3078 16187.5082 42362.8341

8 58.7241 188.4419 1053.8436 4978.3231 16652.4577 43087.9233
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corresponding coefficient matrix should be set equal to zero, that is,

a2 � nbn 0 ðc2 � nbnÞ 0

ða2 � nbnÞ coshðadÞ ða2 � nbnÞ sinhðadÞ ðc2 � nbnÞ coshðcdÞ ðc2 � nbnÞ sinhðcdÞ

%p2 f %p2 h

f sinhðadÞ � %p2 coshðadÞ f coshðadÞ � %p2 sinhðadÞ h sinhðcdÞ � %p2 coshðcdÞ h coshðcdÞ � %p2 sinhðcdÞ

���������

���������
¼ 0;

ð41Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p
þ bn

q
; c ¼ bn �

ffiffiffiffiffiffiffiffiffiffiffi
a

pq
; f ¼ aða2 � ð2� nÞbnÞ; and h ¼ cðc2 � ð2� nÞbnÞ: The

eigenvalues a can be calculated from Eq. (41). Some numerical approximations of a are given
in Table 3 for some values of the parameters.
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Table 1 (continued)

n

9 81.5997 235.6833 1192.7194 5281.3557 17184.4577 43914.8507

10 113.3323 294.8280 1354.5169 5626.2753 17785.4892 44845.5433

n ¼ 0:46; l ¼ 10; d ¼ 1; %p2 ¼ 100

1 69.6196 475.0370 1368.5399 4705.0375 15489.0254 40811.9114

2 73.0771 480.9335 1385.0898 4750.7959 15575.3462 40949.6487

3 79.0445 491.0580 1413.1931 4827.4891 15719.6021 41179.5956

4 87.8447 505.8623 1453.6163 4935.7557 15922.3743 41502.3286

5 99.9592 525.9896 1507.4054 5076.4798 16184.4744 41918.6541

6 116.0529 552.2844 1575.8641 5250.7839 16506.9433 42429.6078

7 137.0004 585.8012 1660.5304 5460.0203 16891.0493 43036.4538

8 163.9098 627.8138 1763.1549 5705.7649 17338.2866 43740.6841

9 198.1431 679.8229 1885.6846 5989.8110 17850.3741 44544.0172

10 241.3291 743.5613 2030.2517 6314.1662 18429.2540 45448.3979

Table 2

Approximations of the eigenvalues a for n ¼ 0:3; l ¼ 10

n d ¼ 0:1; %p2 ¼ 1 d ¼ 0:1; %p2 ¼ 10

1 20.0095 225.8181 199.9985 765.8022

2 20.1454 723.3859 200.1480 1263.3647

3 20.7266 1553.0419 200.7735 2093.0118

4 22.2851 2715.3508 202.3940 3255.3083

5 25.5660 4211.1029 205.7544 4751.0444

6 31.5277 6041.3146 211.8131 6581.2367

7 41.3424 8207.2282 221.7421 8747.1272

8 56.3963 10710.3116 236.9272 11250.1842

9 78.2898 13552.2590 258.9689 14092.1016
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2.3. The case a ¼ b2n

In this case the characteristic equation (37) becomes

k2ðk2 � 2bnÞ ¼ 0 ð42Þ

and its solutions are

k1;2 ¼ 0; k3;4 ¼ 7
ffiffiffiffiffiffiffi
2bn

p
:

The solution of the differential equation (31) is then given by

Y ðyÞ ¼ S1 þ S2y þ S3 cosh
ffiffiffiffiffiffiffi
2bn

p
y

	 

þ S4 sinh

ffiffiffiffiffiffiffi
2bn

p
y

	 

; ð43Þ

where S1; S2; S3; and S4 are constants of integration. As in the previous two cases the following
determinant is similarly obtained when looking for non-trivial solutions of the boundary value
problem for Y ðyÞ (where Y ðyÞ is given by Eq. (43)). As in the two previous cases using boundary
conditions (32)–(34) the system of the four equations for the determination of eigenvalues is
received. This system has a non-trivial solution when the determinant of the coefficient matrix for
the unknown quantities Si ¼ 0; i ¼ 1; 2; 3; 4 is equal to zero. In this case the determinant has
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Table 3

Approximations of the eigenvalues a

n l ¼ 10; d ¼ 1; %p2 ¼ 1

n ¼ 0:3 n ¼ 0:4 n ¼ 0:5 n ¼ 0:6 n ¼ 0:8

5 5.0474

6 12.5524 11.4163 8.1418

7 23.1493 21.6909 19.4993 13.3306

8 38.1964 35.6143 32.1065 21.4984

9 62.9993 60.2307 56.2396 50.7482 33.7101

10 95.1879 91.1683 85.3165 77.1611 51.2067

11 138.7581 133.1580 124.9248 113.3053 75.3987 136.9501

12 196.1310 188.5811 177.3735 161.3620 107.8584 178.9353

13 269.9607 260.0502 245.1999 223.7315 150.3134 231.0134

14 363.1342 350.4097 331.1689 303.0322 204.6407 294.8865

15 478.7715 462.7357 438.2735 402.1001 272.8618 372.4121

16 620.2261 600.3362 569.7342 523.9882 357.1389 465.6039

17 791.0843 766.7508 729.9995 671.9661 459.7719 576.6301

18 995.1661 965.7514 919.7457 849.5199 583.1959 707.8135

19 1236.5247 1201.3419 1145.8771 1060.3514 729.9795 861.6300
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the following form:

�nbn 0 ð2� nÞbn 0

�nbn �nbnd ð2� nÞbn coshðb1dÞ ð2� nÞbn sinhðb1dÞ

%p2 �ð2� nÞbn %p2 nbnb1

� %p2 �ð %p2d þ ð2� nÞbnÞ nbnb1 sinhðb1dÞ � %p2 coshðb1dÞ nbnb1 coshðb1dÞ � %p2 sinhðb1dÞ

���������

���������
¼ 0;

ð44Þ

where b1 ¼
ffiffiffiffiffiffiffi
2bn

p
: Solutions exist for some special values of the parameters. For example for

l ¼ 100; d ¼ 0:1; %p2 ¼ 1; n ¼ 0:6 solutions for a exist for the first five modes. For l ¼ 100; d ¼ 1;
%p2 ¼ 1; n ¼ 0:6 solutions exist for the first three modes and these solutions for a will be exactly the
same as for d ¼ 0:1: This is due to the fact that a ¼ b2n ¼ ðnp=lÞ4 and that a depends only on n and
l: The other parameters such as n and %p2 will only determine the existence of non-trivial solutions
Y ðyÞ:

3. Conclusions and remarks

In this paper the free vibrations of a rectangular plate with two opposite sides simply supported
and the other two densely attached to linear springs have been studied. This combination of
boundary conditions seems not to be considered in the literature before. This rectangular plate
model is one of the simplest models to describe a suspension bridge. For the rectangular plate
model the relationship between the plate parameters and the frequencies has been obtained by
using an adapted version of the method of separation of variables (see Ref. [18]). This result is
important to investigate the wind-induced oscillations of a rectangular plate. The relationship
between the plate parameters and the frequencies has been obtained analytically. For some values
of the parameters numerical approximations of the frequencies are given.
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